metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.137D10, C10.702+ (1+4), C10.872- (1+4), C4.4D4⋊6D5, C42⋊2D5⋊7C2, (C2×Q8).81D10, D10⋊3Q8⋊27C2, (C4×Dic10)⋊43C2, (C2×D4).107D10, C22⋊C4.71D10, Dic5⋊4D4⋊28C2, Dic5⋊Q8⋊20C2, (C2×C10).213C24, (C4×C20).183C22, (C2×C20).629C23, Dic5⋊D4.5C2, D10.12D4⋊40C2, C2.72(D4⋊6D10), C23.35(C22×D5), Dic5.17(C4○D4), Dic5.5D4⋊37C2, (D4×C10).207C22, C23.D10⋊36C2, C4⋊Dic5.232C22, (C22×C10).43C23, (Q8×C10).122C22, (C22×D5).93C23, C22.234(C23×D5), Dic5.14D4⋊37C2, C23.D5.50C22, D10⋊C4.59C22, C23.18D10⋊24C2, C23.11D10⋊16C2, C5⋊8(C22.36C24), (C2×Dic5).260C23, (C4×Dic5).233C22, C10.D4.82C22, C2.48(D4.10D10), (C2×Dic10).180C22, (C22×Dic5).138C22, C2.72(D5×C4○D4), (C5×C4.4D4)⋊7C2, C10.184(C2×C4○D4), (C2×C4×D5).128C22, (C2×C4).191(C22×D5), (C2×C5⋊D4).56C22, (C5×C22⋊C4).60C22, SmallGroup(320,1341)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 734 in 216 conjugacy classes, 93 normal (91 characteristic)
C1, C2 [×3], C2 [×3], C4 [×13], C22, C22 [×9], C5, C2×C4 [×5], C2×C4 [×11], D4 [×4], Q8 [×4], C23 [×2], C23, D5, C10 [×3], C10 [×2], C42, C42 [×3], C22⋊C4 [×4], C22⋊C4 [×8], C4⋊C4 [×10], C22×C4 [×3], C2×D4, C2×D4 [×2], C2×Q8, C2×Q8 [×2], Dic5 [×2], Dic5 [×6], C20 [×5], D10 [×3], C2×C10, C2×C10 [×6], C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8 [×3], C22.D4 [×2], C4.4D4, C4.4D4 [×2], C42⋊2C2 [×2], C4⋊Q8, Dic10 [×3], C4×D5, C2×Dic5 [×7], C2×Dic5 [×3], C5⋊D4 [×3], C2×C20 [×5], C5×D4, C5×Q8, C22×D5, C22×C10 [×2], C22.36C24, C4×Dic5 [×3], C10.D4 [×8], C4⋊Dic5 [×2], D10⋊C4 [×4], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×4], C2×Dic10 [×2], C2×C4×D5, C22×Dic5 [×2], C2×C5⋊D4 [×2], D4×C10, Q8×C10, C4×Dic10, C42⋊2D5, C23.11D10, Dic5.14D4 [×2], C23.D10, Dic5⋊4D4, D10.12D4, Dic5.5D4 [×2], C23.18D10, Dic5⋊D4, Dic5⋊Q8, D10⋊3Q8, C5×C4.4D4, C42.137D10
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.36C24, C23×D5, D4⋊6D10, D5×C4○D4, D4.10D10, C42.137D10
Generators and relations
G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b, dbd-1=a2b-1, dcd-1=c-1 >
(1 115 95 32)(2 71 96 144)(3 117 97 34)(4 73 98 146)(5 119 99 36)(6 75 100 148)(7 111 91 38)(8 77 92 150)(9 113 93 40)(10 79 94 142)(11 69 41 132)(12 105 42 22)(13 61 43 134)(14 107 44 24)(15 63 45 136)(16 109 46 26)(17 65 47 138)(18 101 48 28)(19 67 49 140)(20 103 50 30)(21 85 104 152)(23 87 106 154)(25 89 108 156)(27 81 110 158)(29 83 102 160)(31 122 114 59)(33 124 116 51)(35 126 118 53)(37 128 120 55)(39 130 112 57)(52 145 125 72)(54 147 127 74)(56 149 129 76)(58 141 121 78)(60 143 123 80)(62 155 135 88)(64 157 137 90)(66 159 139 82)(68 151 131 84)(70 153 133 86)
(1 133 123 22)(2 61 124 106)(3 135 125 24)(4 63 126 108)(5 137 127 26)(6 65 128 110)(7 139 129 28)(8 67 130 102)(9 131 121 30)(10 69 122 104)(11 31 85 142)(12 115 86 80)(13 33 87 144)(14 117 88 72)(15 35 89 146)(16 119 90 74)(17 37 81 148)(18 111 82 76)(19 39 83 150)(20 113 84 78)(21 94 132 59)(23 96 134 51)(25 98 136 53)(27 100 138 55)(29 92 140 57)(32 153 143 42)(34 155 145 44)(36 157 147 46)(38 159 149 48)(40 151 141 50)(41 114 152 79)(43 116 154 71)(45 118 156 73)(47 120 158 75)(49 112 160 77)(52 107 97 62)(54 109 99 64)(56 101 91 66)(58 103 93 68)(60 105 95 70)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 46 123 157)(2 45 124 156)(3 44 125 155)(4 43 126 154)(5 42 127 153)(6 41 128 152)(7 50 129 151)(8 49 130 160)(9 48 121 159)(10 47 122 158)(11 55 85 100)(12 54 86 99)(13 53 87 98)(14 52 88 97)(15 51 89 96)(16 60 90 95)(17 59 81 94)(18 58 82 93)(19 57 83 92)(20 56 84 91)(21 120 132 75)(22 119 133 74)(23 118 134 73)(24 117 135 72)(25 116 136 71)(26 115 137 80)(27 114 138 79)(28 113 139 78)(29 112 140 77)(30 111 131 76)(31 65 142 110)(32 64 143 109)(33 63 144 108)(34 62 145 107)(35 61 146 106)(36 70 147 105)(37 69 148 104)(38 68 149 103)(39 67 150 102)(40 66 141 101)
G:=sub<Sym(160)| (1,115,95,32)(2,71,96,144)(3,117,97,34)(4,73,98,146)(5,119,99,36)(6,75,100,148)(7,111,91,38)(8,77,92,150)(9,113,93,40)(10,79,94,142)(11,69,41,132)(12,105,42,22)(13,61,43,134)(14,107,44,24)(15,63,45,136)(16,109,46,26)(17,65,47,138)(18,101,48,28)(19,67,49,140)(20,103,50,30)(21,85,104,152)(23,87,106,154)(25,89,108,156)(27,81,110,158)(29,83,102,160)(31,122,114,59)(33,124,116,51)(35,126,118,53)(37,128,120,55)(39,130,112,57)(52,145,125,72)(54,147,127,74)(56,149,129,76)(58,141,121,78)(60,143,123,80)(62,155,135,88)(64,157,137,90)(66,159,139,82)(68,151,131,84)(70,153,133,86), (1,133,123,22)(2,61,124,106)(3,135,125,24)(4,63,126,108)(5,137,127,26)(6,65,128,110)(7,139,129,28)(8,67,130,102)(9,131,121,30)(10,69,122,104)(11,31,85,142)(12,115,86,80)(13,33,87,144)(14,117,88,72)(15,35,89,146)(16,119,90,74)(17,37,81,148)(18,111,82,76)(19,39,83,150)(20,113,84,78)(21,94,132,59)(23,96,134,51)(25,98,136,53)(27,100,138,55)(29,92,140,57)(32,153,143,42)(34,155,145,44)(36,157,147,46)(38,159,149,48)(40,151,141,50)(41,114,152,79)(43,116,154,71)(45,118,156,73)(47,120,158,75)(49,112,160,77)(52,107,97,62)(54,109,99,64)(56,101,91,66)(58,103,93,68)(60,105,95,70), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,46,123,157)(2,45,124,156)(3,44,125,155)(4,43,126,154)(5,42,127,153)(6,41,128,152)(7,50,129,151)(8,49,130,160)(9,48,121,159)(10,47,122,158)(11,55,85,100)(12,54,86,99)(13,53,87,98)(14,52,88,97)(15,51,89,96)(16,60,90,95)(17,59,81,94)(18,58,82,93)(19,57,83,92)(20,56,84,91)(21,120,132,75)(22,119,133,74)(23,118,134,73)(24,117,135,72)(25,116,136,71)(26,115,137,80)(27,114,138,79)(28,113,139,78)(29,112,140,77)(30,111,131,76)(31,65,142,110)(32,64,143,109)(33,63,144,108)(34,62,145,107)(35,61,146,106)(36,70,147,105)(37,69,148,104)(38,68,149,103)(39,67,150,102)(40,66,141,101)>;
G:=Group( (1,115,95,32)(2,71,96,144)(3,117,97,34)(4,73,98,146)(5,119,99,36)(6,75,100,148)(7,111,91,38)(8,77,92,150)(9,113,93,40)(10,79,94,142)(11,69,41,132)(12,105,42,22)(13,61,43,134)(14,107,44,24)(15,63,45,136)(16,109,46,26)(17,65,47,138)(18,101,48,28)(19,67,49,140)(20,103,50,30)(21,85,104,152)(23,87,106,154)(25,89,108,156)(27,81,110,158)(29,83,102,160)(31,122,114,59)(33,124,116,51)(35,126,118,53)(37,128,120,55)(39,130,112,57)(52,145,125,72)(54,147,127,74)(56,149,129,76)(58,141,121,78)(60,143,123,80)(62,155,135,88)(64,157,137,90)(66,159,139,82)(68,151,131,84)(70,153,133,86), (1,133,123,22)(2,61,124,106)(3,135,125,24)(4,63,126,108)(5,137,127,26)(6,65,128,110)(7,139,129,28)(8,67,130,102)(9,131,121,30)(10,69,122,104)(11,31,85,142)(12,115,86,80)(13,33,87,144)(14,117,88,72)(15,35,89,146)(16,119,90,74)(17,37,81,148)(18,111,82,76)(19,39,83,150)(20,113,84,78)(21,94,132,59)(23,96,134,51)(25,98,136,53)(27,100,138,55)(29,92,140,57)(32,153,143,42)(34,155,145,44)(36,157,147,46)(38,159,149,48)(40,151,141,50)(41,114,152,79)(43,116,154,71)(45,118,156,73)(47,120,158,75)(49,112,160,77)(52,107,97,62)(54,109,99,64)(56,101,91,66)(58,103,93,68)(60,105,95,70), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,46,123,157)(2,45,124,156)(3,44,125,155)(4,43,126,154)(5,42,127,153)(6,41,128,152)(7,50,129,151)(8,49,130,160)(9,48,121,159)(10,47,122,158)(11,55,85,100)(12,54,86,99)(13,53,87,98)(14,52,88,97)(15,51,89,96)(16,60,90,95)(17,59,81,94)(18,58,82,93)(19,57,83,92)(20,56,84,91)(21,120,132,75)(22,119,133,74)(23,118,134,73)(24,117,135,72)(25,116,136,71)(26,115,137,80)(27,114,138,79)(28,113,139,78)(29,112,140,77)(30,111,131,76)(31,65,142,110)(32,64,143,109)(33,63,144,108)(34,62,145,107)(35,61,146,106)(36,70,147,105)(37,69,148,104)(38,68,149,103)(39,67,150,102)(40,66,141,101) );
G=PermutationGroup([(1,115,95,32),(2,71,96,144),(3,117,97,34),(4,73,98,146),(5,119,99,36),(6,75,100,148),(7,111,91,38),(8,77,92,150),(9,113,93,40),(10,79,94,142),(11,69,41,132),(12,105,42,22),(13,61,43,134),(14,107,44,24),(15,63,45,136),(16,109,46,26),(17,65,47,138),(18,101,48,28),(19,67,49,140),(20,103,50,30),(21,85,104,152),(23,87,106,154),(25,89,108,156),(27,81,110,158),(29,83,102,160),(31,122,114,59),(33,124,116,51),(35,126,118,53),(37,128,120,55),(39,130,112,57),(52,145,125,72),(54,147,127,74),(56,149,129,76),(58,141,121,78),(60,143,123,80),(62,155,135,88),(64,157,137,90),(66,159,139,82),(68,151,131,84),(70,153,133,86)], [(1,133,123,22),(2,61,124,106),(3,135,125,24),(4,63,126,108),(5,137,127,26),(6,65,128,110),(7,139,129,28),(8,67,130,102),(9,131,121,30),(10,69,122,104),(11,31,85,142),(12,115,86,80),(13,33,87,144),(14,117,88,72),(15,35,89,146),(16,119,90,74),(17,37,81,148),(18,111,82,76),(19,39,83,150),(20,113,84,78),(21,94,132,59),(23,96,134,51),(25,98,136,53),(27,100,138,55),(29,92,140,57),(32,153,143,42),(34,155,145,44),(36,157,147,46),(38,159,149,48),(40,151,141,50),(41,114,152,79),(43,116,154,71),(45,118,156,73),(47,120,158,75),(49,112,160,77),(52,107,97,62),(54,109,99,64),(56,101,91,66),(58,103,93,68),(60,105,95,70)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,46,123,157),(2,45,124,156),(3,44,125,155),(4,43,126,154),(5,42,127,153),(6,41,128,152),(7,50,129,151),(8,49,130,160),(9,48,121,159),(10,47,122,158),(11,55,85,100),(12,54,86,99),(13,53,87,98),(14,52,88,97),(15,51,89,96),(16,60,90,95),(17,59,81,94),(18,58,82,93),(19,57,83,92),(20,56,84,91),(21,120,132,75),(22,119,133,74),(23,118,134,73),(24,117,135,72),(25,116,136,71),(26,115,137,80),(27,114,138,79),(28,113,139,78),(29,112,140,77),(30,111,131,76),(31,65,142,110),(32,64,143,109),(33,63,144,108),(34,62,145,107),(35,61,146,106),(36,70,147,105),(37,69,148,104),(38,68,149,103),(39,67,150,102),(40,66,141,101)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 9 | 0 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 18 | 35 | 10 | 28 |
| 0 | 0 | 6 | 23 | 10 | 23 |
| 0 | 0 | 37 | 12 | 24 | 6 |
| 0 | 0 | 16 | 25 | 34 | 17 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 38 | 38 |
| 0 | 0 | 0 | 1 | 3 | 0 |
| 0 | 0 | 0 | 13 | 40 | 0 |
| 0 | 0 | 28 | 28 | 0 | 40 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 21 | 21 | 0 | 30 |
| 0 | 0 | 20 | 24 | 6 | 11 |
| 0 | 0 | 7 | 33 | 37 | 20 |
| 0 | 0 | 0 | 15 | 4 | 0 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 20 | 21 | 0 | 0 |
| 0 | 0 | 18 | 21 | 0 | 0 |
| 0 | 0 | 0 | 0 | 3 | 23 |
| 0 | 0 | 0 | 0 | 37 | 38 |
G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,18,6,37,16,0,0,35,23,12,25,0,0,10,10,24,34,0,0,28,23,6,17],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,28,0,0,0,1,13,28,0,0,38,3,40,0,0,0,38,0,0,40],[0,9,0,0,0,0,32,0,0,0,0,0,0,0,21,20,7,0,0,0,21,24,33,15,0,0,0,6,37,4,0,0,30,11,20,0],[0,32,0,0,0,0,9,0,0,0,0,0,0,0,20,18,0,0,0,0,21,21,0,0,0,0,0,0,3,37,0,0,0,0,23,38] >;
50 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | ··· | 4O | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20L | 20M | 20N | 20O | 20P |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 20 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
50 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | |||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D10 | 2+ (1+4) | 2- (1+4) | D4⋊6D10 | D5×C4○D4 | D4.10D10 |
| kernel | C42.137D10 | C4×Dic10 | C42⋊2D5 | C23.11D10 | Dic5.14D4 | C23.D10 | Dic5⋊4D4 | D10.12D4 | Dic5.5D4 | C23.18D10 | Dic5⋊D4 | Dic5⋊Q8 | D10⋊3Q8 | C5×C4.4D4 | C4.4D4 | Dic5 | C42 | C22⋊C4 | C2×D4 | C2×Q8 | C10 | C10 | C2 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 8 | 2 | 2 | 1 | 1 | 4 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{137}D_{10} % in TeX
G:=Group("C4^2.137D10"); // GroupNames label
G:=SmallGroup(320,1341);
// by ID
G=gap.SmallGroup(320,1341);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,387,100,1123,346,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations